Viability of Reverse Pricing in Cellular Networks: A New Outlook on Resource Management

Seong-Lyun Kim
Professor, School of EEE
Assoc Dean, College of Eng
Director, Center for Flexible Radio
Yonsei Univ., Seoul, Korea

Joint work with Sang Yeob Jung, Joon Soo Kim, and Jun Ki Hong
Center for Flexible Radio: Practically Limitless User Spectrum (PLUS)

Licensed Spectrum

Open Access Spectrum

Licensed Flexible Service over Shared Spectrum:
user-deployed, low cost/complexity, ultra-dense cells

Pain "Sharing"

Protection

Cognitive Radio (conventional)

FR+

Server

MAC

DB

sparse sensing

0.4 GHz

6 GHz
Dynamic Spectrum Access via High-Resolution/Low-Complexity Spectrum Sensing

High-Resolution Low-Complexity Sensing at Yonsei
- Spectrum Res.: 50 kHz
- Time Res.: 200 ms
- Spatial Res.: 10 m x 10 m

Sensing Map
- Frequency: -125 dBm to >10 dBm

Opportunity Map
- High opportunity (1)
- Low opportunity (0)

Sensing Map → Opportunity Map
- 1단계: Spectrum Sensing Map
 - Receiver Mobility
 - Interference Prediction
- 2단계: DSA Opportunity Map

Realtime DSA at Yonsei
- FBMC-based
- Flexible Duplex

Cloud DB/MAC at SNU
- Cloud Sensing/OP Map DB
- Cloud MAC Interf. Mngmt.

Cloud DB/MAC
Part 1. Introduction
1. **Total traffic** volume increase: 3.04 times (47.66 → 145.05 MB/day).
2. Aggregate **walking and nomadic user traffic** proportion increase: 2.64 times (14.74 → 38.93%)
3. **Nomadic heavy user** traffic proportion increase: 2.83 times (10.35 → 29.29%)

Visual Example of Our Experimental Data Collection

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio access technology</td>
<td>WCDMA / LTE</td>
<td>WCDMA / LTE / LTE-A</td>
</tr>
<tr>
<td>Number of participants</td>
<td>82 (male: 61, female: 21)</td>
<td>70 (male: 54, female: 16)</td>
</tr>
<tr>
<td>Experimental period</td>
<td>avg. 1.28 weeks</td>
<td>avg. 1.13 weeks</td>
</tr>
<tr>
<td>Measurement applications</td>
<td>LifeMap</td>
<td>My Data Manager, Moves</td>
</tr>
<tr>
<td>User speed</td>
<td>Walking: up to 10 km/h (avg. 2.58 km/h)</td>
<td>Nomadic: above 10 km/h (avg. 31.9 km/h)</td>
</tr>
</tbody>
</table>

User Convexity: Convex-Shaped over Velocity

Def. **User convexity**: the traffic volume ratio of nomadic users to walking users

User convexity increase: 1.29 times (2.35 → 3.04)

Solution: Traffic Convexity Aware Cell Association

Road to 5G: “How to Match Supply to Demand?”

Pricing: Prof. Frank Kelly’s Seminal Work [Kelly98]

- **Effective tool** for design, operation, and management in cellular networks

Mismatch: “Theory” and “Practice”

- High spatiotemporal user demand uncertainty
 - Network demand: 10x in peak-hours vs. off-peak hours [Ha12]

“New congestion pricing framework”

Smart Data Pricing (SDP) [Sen13]

- Broad set of ideas and principles beyond the traditional pricing (e.g., flat-rate or usage-based pricing)
 - **Edge devices** as a part of network management
 - Not just how much to charge, but also **when** and **how to charge**

SDP 1. Operator-driven Time-Dependent Pricing (Forward Pricing) [Ha12]

- Low prices in less-congested periods, shifting usage from peak to off-peak periods

CLAIM: Operator still has to face or predict demand uncertainty

Fig. 1. Spectrum usage efficiency over time
SDP 2. Reverse Pricing [Jung15]

- Common in travel industry (e.g., airlines and hotels) - priceline.com
- Concept: Data amount/rate purchased, rather than sold

User 1

Resource recommendation rule: 10 GB + ? GB

Name user 1’s price: ? $/GB

Demand: 10 GB
Payment: 10 $

User 2

Resource recommendation rule: 5 GB + ? GB

Name user 2’s price: ? $/GB

Demand: 5 GB
Payment: 5 $

Available capacity: 20 GB
Price: 1 $/GB
Hidden bid-acceptance threshold: ? $/GB

Objective

Q. How to design reverse pricing w/ forward pricing to achieve “triple-win” solutions?

1. Resource utilization efficiency
2. Users’ total payoffs
3. Operator’s total revenue

Realistic Issues - Incomplete Information

1. *Demand uncertainty*: user demand expectation but not variance
2. *User heterogeneity*: willingness to pay, bidding profiles
Part 2. Teaser
Resource Utilization Efficiency

Fig. 2. Total user demand

$p^* = \{1.5616, 1.5628, 1.4471, 1.4754, 1.5370, 1.6212, 1.5817, 1.6746, 1.5973, 1.6871, 1.5600, 1.4823\}$
Users’ Total Payoffs

Fig. 3. Total user payoff
Viability of Reverse Pricing (3/7)

Operator’s Total Revenue

Fig. 4. Operator’s revenue
Viability of Reverse Pricing (4/7)

Q. Is proposed reverse pricing is **Real, Implementable**?

- We **Architected & Prototyped** a fully functional reverse pricing system via App. & Server
- Through experiment study, we will **confirm viability** of reverse pricing or compare theory and practice

![Trafficbid App and Server Diagram]

Can download to search “Trafficbid”

http://ramoyonsei.angelworks.co.kr/ta_admin/index.php?/home
Viability of Reverse Pricing (5/7)

App. Prototype

<table>
<thead>
<tr>
<th>Calling plan</th>
<th>Time</th>
<th>Recommended data amount</th>
<th>Minimum participation price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 GB</td>
<td>00:00 ~ 06:00</td>
<td>5 MB</td>
<td>0.1 $ / MB</td>
</tr>
<tr>
<td>55000 원</td>
<td>06:00 ~ 12:00</td>
<td>15 MB</td>
<td>0.2 $ / MB</td>
</tr>
<tr>
<td>Auto-mode</td>
<td>12:00 ~ 18:00</td>
<td>30 MB</td>
<td>0.4 $ / MB</td>
</tr>
<tr>
<td></td>
<td>18:00 ~ 24:00</td>
<td>60 MB</td>
<td>0.6 $ / MB</td>
</tr>
</tbody>
</table>

ex) 1기가에 1만원 사용시 1GB, 10000 입력

5000원

Change

Bid
Results

<table>
<thead>
<tr>
<th>Number</th>
<th>Time</th>
<th>Winning bid</th>
<th>Success / Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00 ~ 06:00</td>
<td>0.2 $/ MB</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>06:00 ~ 12:00</td>
<td>0.3 $/ MB</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>12:00 ~ 18:00</td>
<td>0.4 $/ MB</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>18:00 ~ 24:00</td>
<td>0.7 $/ MB</td>
<td>O</td>
</tr>
</tbody>
</table>

Data usage pattern

![Data usage pattern chart](chart.png)
Viability of Reverse Pricing (7/7)

Server

- Set minimum participation price, winning bid, user-specific recommended data amount
Part 3. System Model
Resource-Constrained & Time-Slotted Network

- A total amount of Q limited resource (e.g., data amount, rate, bandwidth, etc)
- A single operator
- A set $\mathcal{I} = \{1, \cdots, I\}$ of users
- A set $\mathcal{H} = \{1, \cdots, H\}$ of time slots (e.g., peak, normal, off-peak demand slots)

Fig. 5. Resource-constrained & time-slotted network
User’s Payoff Function

- The payoff function for user i at time slot h

$$u_i(\theta_i^h, s_i^h, p^h) = \theta_i^h \ln(1 + s_i^h) - p^h s_i^h$$

- Logarithmic utility function is commonly used to model the proportionally fair resource allocation [Basar02]
- θ_i^h is the maximum price per unit resource for user i, implying changing necessities of resource over time

Interaction Between Operator and Users

Stage I. Pricing based on demand predictions

Stage II. Use or report resources as a price taker

Stage III. Resource allocation rule & Hidden bid-acceptance threshold

Stage IV. Name your own price

Analysis: Backward Induction

Fig. 6. Timing of the game that characterizes the interaction between operator and users
Part 4. Analysis
Stage IV. Name Your Own Price (1/2)

Users’ Participation Decisions in Stage IV

• Operator publicly specify a minimum participation unit price $0 \leq p_{\text{min}}^h < p^h$ below which x_i^h is not sold.

• User i decides whether to take part in the pricing process, i.e.,

$$\theta_i^h \ln(1 + x_i^h) - p_{\text{min}}^h x_i^h \geq \theta_i^h \ln(1 + s_i^h) - p^h x_i^h$$ \hspace{1cm} (1)

• From (1), define the set of potential users that would name strictly positive prices at time slot h, i.e.,

$$\mathcal{I}^+(p_{\text{min}}^h) = \left\{ i \in \mathcal{I} : p_{\text{min}}^h \leq \frac{\theta_i^h \ln ((1 + x_i^h)/(1 + s_i^h)) + p^h s_i^h}{x_i^h} \right\}$$ \hspace{1cm} (2)

Group 1: name own price!

Group 2: Do not name own price!
Users’ Bidding Strategies in Stage IV

• Hidden bid-acceptance threshold (price): $\tau^h \sim U[p_{min}^h, p^h]$

\begin{equation}
P1: \max_{p_{min}^h \leq b_i^h \leq p^h} u_i(\theta_i^h, x_i^h, b_i^h)P\left(b_i^h \geq \tau^h\right) + u_i(\theta_i^h, s_i^h, p^h)P\left(b_i^h < \tau^h\right), \forall i \in \mathcal{I}^+(p_{min}^h), \forall h \in \mathcal{H} \tag{3}
\end{equation}

Proposition 1. For each user $i \in \mathcal{I}$, the optimal solution for Problem $P1$ at each time slot $h \in \mathcal{H}$ is given by

\begin{equation}
b_i^{h*} = \begin{cases}
\frac{1}{2x_i^h} \left[\theta_i^h \ln \left(\frac{1+x_i^h}{1+s_i^h} \right) + s_i^h p^h + x_i^h p_{min}^h \right], & \forall i \in \mathcal{I}^+(p_{min}^h), \\
0, & \forall i \in \mathcal{I}\setminus\mathcal{I}^+(p_{min}^h).
\end{cases} \tag{4}
\end{equation}
Stage III. Resource Recommendation Rule & Hidden Bid-Acceptance Threshold (1/4)

Issue 1. Resource Allocation Rule

- Q. What is *fairness criterion* among users for resource allocation?
 - Constraint 1. Demand \(\leq \) Capacity
 - Constraint 2. Revenue via reverse pricing \(\geq \) Revenue via forward pricing

![Diagram of resource allocation]
Stage III. Resource Recommendation Rule & Hidden Bid-Acceptance Threshold (1/4)

Issue 1. Resource Allocation Rule (Cont’d)

• Q. What is **fairness criterion** among users for resource allocation?

 ➡ A. Proportional residual resource recommendation rule

```
Operator

20 GB
1 $/GB

• ‘user payment ∝ residual resource’

User 1

10 GB + (2/3) × 5 GB

User 2

5 GB + (1/3) × 5 GB
```
Stage III. Resource Recommendation Rule & Hidden Bid-Acceptance Threshold (2/4)

Issue 2. Minimum Participation Unit Price

• Q. How to publicly specify a minimum participation unit price?
 ➡ A. At least the revenue earned by forward pricing

Lemma 1. The minimum participation unit price that the operator sets should satisfy the following condition

\[
p^h > p^h_{\text{min}} \geq \frac{p^h \sum_{i \in \mathcal{I}} s^h_i}{Q}, \quad \forall h \in \mathcal{H}.
\]

![Diagram showing resource allocation between Operator and Users](image)

Operator

- 20 GB
- 1 $/GB, 0.75 $/GB

User 1

- 10 GB + (2/3) × 5 GB

User 2

- 5 GB + (1/3) × 5 GB
 Issue 2. Minimum Participation Unit Price (Cont’d)

• Q. How to set minimum participation unit price for revenue maximization?

➡ A. As a strategic variable, taking the following tradeoff into account

![Graph showing bidding profiles under different minimum participation unit prices](image)

Fig. 7. The comparison of bidding profiles under different minimum participation unit prices
Issue 3. Hidden Bid-Acceptance Threshold

• Q. How to set hidden bid-acceptance threshold given a specific minimum participation unit price?

⇒ A. Do not forgo potentially profitable trades via reverse pricing

Proposition 2. For any minimum participation unit price p_{min}^h subject to (5), the hidden bid acceptance threshold is given by

$$\tau^h = p_{min}^h$$ (6)
Stage I and II. Forward Pricing and Users’ Desired Resources

Stage II. Users’ Desired Resources

\[
P_2: \max_{s_i^h} u_i(\theta_i^h, s_i^h, p_i^h) = \theta_i^h \ln(1 + s_i^h) - p_i^h s_i^h, \quad \forall i \in \mathcal{I}, \forall h \in \mathcal{H}
\]

(7)

Stage I. Forward Pricing based on Demand Predictions

\[
P_3: \max_{P \geq 0} \sum_{h \in \mathcal{H}} \sum_{i \in \mathcal{I}} \mathbb{E}_{\theta_i^h} (\theta_i^h - p_i^h)
\]

s.t. \(\sum_{i \in \mathcal{I}} \left(\frac{\theta_i^h}{p_i^h} - 1 \right) \leq Q, \quad \forall h \in \mathcal{H}. \)

(8)

(9)

Proposition 3. Given \(Q > \frac{\sum_{i \in \mathcal{I}} \hat{\theta}_i^h + \epsilon_i^h}{\hat{\theta}_i^h - \epsilon_i^h} - I \), the optimal solution to Problem P3 is given by

\[
p_i^h^* = \frac{\sum_{i \in \mathcal{I}} \hat{\theta}_i^h + \epsilon_i^h}{Q + I}, \quad \forall h \in \mathcal{H}.
\]

(10)

Demand uncertainty stemming from time-varying willingness to pay.
Part 5. Numerical Results
Resource Utilization Efficiency

- Forward pricing: still fluctuating residual capacity due to intrinsic demand uncertainty
- Reverse pricing w/ forward pricing: no capacity left over resource scheduling horizon (only in this example)

$p^* =$ {1.5616, 1.5628, 1.4471, 1.4754, 1.5370, 1.6212, 1.5817, 1.6746, 1.5973, 1.6871, 1.5600, 1.4823}

Fig. 8. Toal user demand
Viability of Reverse Pricing (2/3)

Users’ Total payoffs

- The proposed pricing scheme always outperforms the forward pricing only
- Increased flexibility for pricing \Rightarrow total user payoff \uparrow

![Graph showing total user payoff over resource scheduling horizon](image-url)

Fig. 9. Total user payoff
Operator’s Total Revenue

- Perhaps surprisingly, operator can extract more revenue by reverse pricing
- Operator should re-examine the idea of involving users in pricing process

Fig. 10. Operator’s revenue
Operator’s Total Revenue

- At a particular time slot 1, p_{min}^1 should be chosen as 1.515, achieving maximum revenue gain (e.g., 28%)
- However, it is impossible to set it in reality due to some uncertainty of bidding profiles

Fig. 11. Operator’s revenue under p_{min}^1
Goal of Maximizing Operator's Revenue (2/3)

Users’ Total Payoffs

- Total user payoff is non-increasing over p_{min}^1
- This is due to the fact that users are induced to bid with higher prices as p_{min}^1 increases

![Graph showing total user payoff under varying p_{min}^1 values.](image)

Fig. 12. Total user payoff under p_{min}^1
Goal of Maximizing Operator's Revenue (2/3)

Resource Utilization Efficiency

- Resource utilization efficiency is non-increasing over p_{min}^1
- When $1.515 < p_{\text{min}}^1 < 1.519$, only some users name their own prices, decreasing resource utilization efficiency
- When $1.519 \leq p_{\text{min}}^1 \leq p^1^* = 1.5616$, no users name their own prices, degenerating forward pricing only case.

![Resource utilization efficiency graph](image)

Fig. 13. Resource utilization efficiency under p_{min}^1
Part 6. Conclusion
Q. How to design reverse pricing w/ forward pricing to achieve “triple-win” solutions?

1. Operator’s revenue - YES
2. Resource utilization efficiency - YES
3. Net utility summed over all users - YES

The idea of involving users in pricing decisions seems counterproductive. But, it may be the time to ‘re-examine’ this assumption.
Thank You

Seong-Lyun Kim
Professor, School of EEE
Assoc Dean, College of Eng
Director, Center for Flexible Radio
Yonsei Univ., Seoul, Korea
Joint work with Sang Yeob Jung, Joon Soo Kim, and Jun Ki Hong

